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ABSTRACT: An important aspect of designing polymeric articles for engineering applica-
tions and predicting their properties over their lifetime is the computation of their
time-dependent viscoelastic behavior. A simplified numerical computational technique
based on a Gaussian spectral distribution model was developed to describe this behavior
over a wide range of time and temperature. The model was used to describe the stress-
relaxation behavior of isotactic polypropylene (iPP) over a wide range of strain, time,
and temperature. It appears that a spectrum with two components (one distribution
for the amorphous zone and the other for the crystalline zone) is sufficient to describe
the viscoelastic behavior of iPP. The parameters specifying the distributions (mean
relaxation time, standard deviation, and relaxation strength) may be obtained by non-
linear regression analysis and the temperature dependence of the distributions may
be evaluated experimentally. An excellent fit between experimental data and the math-
ematical model is observed. The method may be applied generally for any linear visco-
elastic property (e.g., static and dynamic relaxation and creep in tensile or shear) and
for any polymer. q 1997 John Wiley & Sons, Inc. J Appl Polym Sci 66: 1101–1115, 1997

INTRODUCTION results are dependent on the loading procedure,
i.e., whether at constant strain, determining the
stress-relaxation modulus; at constant stress, de-A precise knowledge of the mechanical behavior
termining the creep modulus; or cyclic loading,of polymeric materials used for engineering appli-
determining the dynamic (or complex) modulus.cations can be extremely important. However, the
It is not a satisfactory state to have a multiplicitymechanical properties of polymeric solids depend
of coefficients and functions, each fitting just onestrongly on time, temperature, loading procedure,
particular experiment for a particular material.and loading history.1–3 To fully describe the me-
Second, with numerical or graphical data, somechanical properties of a material in a particular
method of interpolation (and possibly extrapola-mode (e.g., tensile modulus), it is necessary to
tion) is often necessary, making use of the dataperform a set of experiments covering all of the
inconvenient. In addition, the storage of largetime–temperature space practicable. These data
amounts of data is wasteful of both manpowercan then be numerically or graphically collated
and computer memory. For these reasons, it isand used as a description of the material. How-
generally more convenient and informative to de-ever, a number of complications arise: First, the
scribe a viscoelastic material in terms of a distri-
bution function of time constants, where, in prin-

Correspondence to: N. K. Dutta. ciple, one such distribution function is enough to
Contract grant sponsors: Australian Research Council completely characterize the material. This could(ARC); Moldflow Pty Ltd.

be either the distribution of relaxation times or,Journal of Applied Polymer Science, Vol. 66, 1101–1115 (1997)
q 1997 John Wiley & Sons, Inc. CCC 0021-8995/97/061101-15 alternatively, the distribution of retardation
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1102 DUTTA AND EDWARD

times, more simply known as the relaxation spec- ing the distribution function from graphical differ-
entiation of experimental data on stress relax-trum or the retardation spectrum, respectively.

The relaxation and retardation spectra are re- ation 1,7 and dynamic rigidity 8,9 or viscosity 10

have been used by many investigators. Ferrylated to each other as an integral transform of
each other at a particular temperature, although and Williams11 developed a second-approxima-

tion method to derive the distribution spectrumthe analytical evaluation of these transforms is
fraught with problems except in the simplest of a viscoelastic material from experimental mea-

surement. Andrews and Tobolsky12 used a boxcases. Numerical evaluation of the transforms is
another possibility, although a simple analytic distribution of relaxation times to approximate

the relaxation behavior, but its usefulness wasspectrum is thus transformed to a numerical ‘‘re-
ciprocal’’ spectrum. According to the linear theory limited due to the fact that it could only success-

fully describe the longtime end of the relaxationof viscoelasticity, all time-dependent mechanical
properties for a given substance under given ex- time spectrum (and that for limited number of

cases where the log time dependence of the modu-perimental conditions can be correlated with each
other through the rigorous mathematical rela- lus shows a straight-line relationship). Several

investigators13,14 have explored the possibility oftions involving the relaxation spectrum.3–5

The relaxation (or retardation) spectrum can constructing deformation maps, and this included
modeling the time and temperature-dependentbe considered as a distribution function of relax-

ation (or retardation) times which, in the case of modulus of amorphous polymers, E (t , T ) , under
various loading conditions. They adapted and as-a thermorheologically simple material, remains

unchanged with temperature and the viscoelastic sembled the available constitutive equations for
the different regimes (such as the glassy, visco-response curves simply shift along the logarithmic

time scale with temperature (toward a shorter elastic, rubbery, viscous, and decomposition re-
gimes) and used these to predict the behavior oftime scale or higher frequencies with increasing

temperature). In such a case, the time–tempera- the polymer materials over a wide time and tem-
perature range.ture equivalence principle can be applied to de-

scribe the viscoelastic response of the material It is generally accepted that no simple analyti-
cal or numerical method exists to correctly de-over a wide range of time, temperature, or fre-

quency. Thermorheological simplicity demands scribe the viscoelastic behavior of polymeric sol-
ids. In this research program, an integrated re-that all the molecular mechanisms involved in the

relaxation process have the same temperature de- search approach was undertaken to predict the
viscoelastic response behavior of different poly-pendence. However, it is recognized that the local

polymer chain backbone motion and the motion meric materials over a wide range of time and
temperature by using simple temperature-depen-of the different kinds of molecular moieties pres-

ent in a polymer molecule exhibit different tem- dent distribution functions. A normal distribution
of relaxation times was assumed to describe theperature dependencies, and in such a case, the

distribution function changes form (shape) with individual relaxation processes of polymeric ma-
terials and the temperature dependence of eachchanges in temperature and such thermorheologi-

cally complex materials are not reducible by sim- distribution was also considered. This method
was used to describe the stress-relaxation behav-ple superposition principles. The most thermorhe-

ologically simple material polyisobutylene (PIB) ior of isotactic polypropylene (iPP) over a wide
range of temperature and time.is thermorheologically complex. Recently, this

point was discussed in detail by Plazek in his 1995 Polypropylene (PP) is a thermoplastic material
of great commercial importance, especially for theBingham Medal address.6

Due to the versatility and importance of the injection-molding and fiber-spinning processes,
due to its processing ease and the range of me-relaxation spectrum, extensive research efforts

have been made to obtain it from experimental chanical and performance characteristics. How-
ever, due to the existence of a variety of supermo-data and theoretical models.1–4 Different kinds of

mathematical expressions have been used as dis- lecular structures including spherulites and mul-
tiple crystalline forms, it is a structurallytribution functions in the discussion of anelastic

and dielectric behavior of materials,3–5 and in complicated material. Many efforts have been
made to construct a constitutive equation for PP.most cases, they are complicated or cumbersome

or no integral transform of the function is avail- Kitagawa et al.15 proposed a rate-dependent non-
linear constitutive equation based on Kremples’16able. First-approximation procedures for evaluat-
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GENERIC RELAXATION SPECTRA OF SOLID POLYMERS. I 1103

overstress model to explain and predict the behav-
E (t ) Å Er / (Eu 0 Er ) *

`

0
g (t )expS0 t

tD dt (2)ior of PP in stress-relaxation, creep, and cyclic
loading conditions. Many investigators17–19 used
simple three-element models to describe the visco-

where g (t ) is the spectrum of relaxation times;elastic behavior. In all these cases, experiments
Eu , the unrelaxed modulus; and Er , the relaxedwere carried out only at one or two particular tem-
plateau modulus. (Eu 0 Er ) is the time-dependentperatures and over a very limited period of time
portion of the elastic modulus in a relaxation ex-(1 s to a maximum of 1 day) and the models were
periment. In the above equation, viscous mecha-used to explain the behavior in this narrow time/
nisms are ignored, and it is assumed that the vis-temperature frame. However, in case of polymeric
coelastic solid relaxes from Eu to Er .solids, the relaxation and creep phenomena con-

In many respects, it is more convenient to de-tinue over a wide time scale (normally many de-
scribe the spectrum of relaxation times as a func-cades) and are rapidly accelerated by small in-
tion of logarithmic time (ln t ) rather than increases in temperature. Therefore, simple models
terms of t itself, in which case, eq. (2) can beare not adequate to describe the complex behavior
expressed asof polymers like PP over the entire range of time

and temperature space that may be encountered
E (t ) Å Er / (Eu 0 Er )in practice.

1 *
`

0`

h ( ln t )expS0 t
tD d ln t (3)

THEORETICAL MODEL

where h ( ln t ) is the spectrum of relaxation timesThe Stress-Relaxation Modulus
expressed as a function of (ln t ) .

Both of the above distributions are normalizedPhenomenologically, the stress-relaxation behav-
so thatior of viscoelastic materials is most simply de-

scribed as a Maxwellian relaxation (the model
consists of an elastic element and a flow element *

`

0
g (t ) dt Å *

`

0`

h ( ln t ) d ln t Å 1 (4)
in series), which predicts that the stress relaxes
exponentially with time. The stress-relaxation
modulus can be expressed by If h ( ln t ) is specified for a particular tempera-

ture for all t, then the stress-relaxation modulus
is defined for this temperature, but the tempera-E (t ) Å E0exp 0 t /t (1)
ture dependence of the relaxations (and so the
modulus) has also to be accounted for. In a ther-where E0 is the modulus of the elastic element; t ,
morheologically complex material, the tempera-the time; and t, the relaxation time of the mate-
ture dependence of the different relaxation pro-rial. When the time scale of observation is much
cesses known to occur in polymers3,6 is different.shorter than t, the material behaves as an elastic
Therefore, it is convenient at this stage to regardsolid, whereas for any type of slow mechanical
the overall distribution function h ( ln t ) as a sumtest, where the time scale is much larger than
of separate distributions describing the differentt, the material will behave as a viscous liquid.
relaxation processes. Using the usual conventionHowever, for any observation of the intermediate
that the relaxations are labeled, in turn, as a, b,time scale, where ‘‘t ’’ is of the same order of mag-
g, and d, with decreasing temperature of occur-nitude as that of t, both elasticity and flow will
rence at a particular time or frequency, the distri-observed. Although the Maxwell model indicates
bution function can be written asthe general nature of the polymeric behavior un-

der stress, polymeric solids show rather more
h ( ln t ) Å ha( ln t ) / hb( ln t ) / hg( ln t ) / rrrcomplex behavior.

A more realistic case can be modeled with a Å ∑
R

hR ( ln t ) , (5)
continuous set of Maxwell elements in parallel,20

and the stress-relaxation modulus E (t ) , a contin-
uous decreasing function in increasing time, can where R Å a, b, g, d, etc., is the label for the

particular relaxation. The a relaxation is gener-be expressed as
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1104 DUTTA AND EDWARD

ally due to the glass transition, but may be due ha( ln t ) along the ln t axis, with no change of
shape of the distribution.to different mechanisms, particularly in semicrys-

talline polymers.
Substitution of eq. (5) in eq. (3) gives

The Distribution of Relaxation Times

Given that the temperature dependence of the re-E (t ) Å Er / (Eu 0 Er )
laxation times is described by either eqs. (7) or
(8) as appropriate, to describe the modulus com-1 ∑

R
*

`

0`

hR( ln t )expS0 t
tD d ln t (6)

pletely, the distribution h (t ) or its components
ha(t ) , hb(t ) must be specified. This can be done
either numerically or analytically, i.e., the distri-
bution functions could be given as a table of valuesTemperature Dependence of the Relaxations
or as a mathematical function. These two possibil-

The temperature dependence of the secondary re- ities will be illustrated in turn.
laxations (relaxations due to mechanisms other
than the glass–rubber transition) can generally Numerical Description of the Relaxation Spectrum
be described by an Arrhenius equation:

A numerical description could give the value of
the distribution functions at a necessarily large

ln aT Å
ln tR

ln t0
Å QR

R0
S1

T
0 1

T0
D (7) number of points, enabling the integral in eq. (6)

to be numerically evaluated. Such a procedure
would generally be cumbersome and wasteful of
space in computations. If, however, instead of de-where tR is the relaxation time at a particular
fining a continuous spectrum of relaxation times,temperature T ; t0 , the relaxation time at a refer-
the relaxation times are regarded as a finite setence temperature T0 ; R0 , the gas constant; and
of discrete values, the individual relaxation spec-QR , the activation energy in Joules/mole, and the
tra in eq. (5) could each be defined by a relativelysubscript R represents a, b, g, d, as appropriate.
small set of relaxation times.This transformation implies a particular shift

For the glass transition (R Å a ) -related relax-of the relaxation spectrum hR( log t ) , along the
ation times, these will be the relaxation times atlog t axis, with a different activation energy corre-
Tg , whereas for the secondary relaxations, theysponding to each ‘‘R ’’ describing the shift. The
will be the relaxation times at ` , where the appro-shape of each individual distribution on the log t
priate activation energy QR also has to be given.scale will remain unchanged and the extent of the
The individual discrete spectra can be expressedshift is given by the shift factor ln aT in eq. (7).
as follows:The a relaxation process of highly crystalline

polymers will generally follow the Arrhenius
hR (t ) Å ∑

i

DhRid (t 0 tRi) (9)equation. This is because in crystals unoccupied
or free volume is quantized as vacancies of fixed
volume.

where {DhRi} is the set of relaxation strengths;On the other hand, in an amorphous polymer,
{tRi } is the set of relaxation times whose elementsthe relaxation times describing the a relaxation
for the a transition are determined from the setusually follow the WLF equation21:
of relaxation times given at Tg using eq. (8) and
for the secondary transitions (R x a ) are deter-
mined using eq. (7) and the set of relaxation timesln aT Å

ln tR

ln tg
Å 0 C1(T 0 Tg )

C2 / (T 0 Tg )
(8)

given at T Å ` ; and d is the delta function.
Substitution of eq. (9) in eq. (6) gives

where C1Å 17.5, C2Å 51.6 K, T is the temperature
at which the relaxation time is required, tR is this

E (t )ÅEr/ (Eu0Er ) ∑
R

∑
i

DhRiexpS0 t
tRi
D (10)relaxation time, Tg is the glass transition temper-

ature, and tg is the relaxation time at the glass
transition temperature. If this temperature trans-
formation of the relaxation times applies to all Note here that due to the normalization condi-

tions [eq. (4)] the requirement on the discretethe times falling into the R Å a term of eq. (5),
this implies a shift of the relaxation spectrum relaxation strengths is that
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∑
R

∑
i

DhRi Å 1 (11) E (t ) Å Er / (Eu 0 Er ) ∑
R

DhR

1 *
`

U

1√
2p

expS0u2

2 D du (15)The quantity giving the relative strength of a par-
ticular relaxation is given by the sum of the DhRi

over i for a particular R .
where U Å U (t ) Å ( ln t 0 ln tR ) /D ln tR , and u
Å ( ln t 0 ln tR) /D ln tR .

Analytical Description of the Relaxation Spectrum The integral in eq. (15) can be evaluated nu-
merically using a simple published approximateIf, instead of numerically specifying the relax-
formula23 (details shown in the Appendix). Theation spectrum, an analytical form is assumed for
absolute error in estimation is less than 2.5the distributions, some potential economy of de-
1 1004 .scription is available. For example, it could be rea-

sonably assumed that the distribution of relax-
ation times (in log time space) is Gaussian, so

EXPERIMENTALthat

Measurement Technique
hR ( ln t )

A tensile stress relaxometer that records the
stress and its decay has been developed for study-Å DhR√

2pD lnR

expF1
2 S ln t 0 ln tR

D ln tR
D2G (12)

ing the effect of strain, temperature, and other
variables on the long-term properties of polymers.
One end of the test specimen is attached to the

where ln tR is the mean value of the distribution; upper grip (stationary but adjustable) which is
D ln tR , the standard deviation; and DhR , the attached to a load cell. The load cell is connected
overall relative strength of the relaxation. to a PC through an ADC (PICOLOG, ADC 12,

This distribution is completely defined by three Pico Technology Limited, U.K.) which is used to
parameters, and so only the mean, standard devi- record stress as a function of time. Picolog data
ation, and relaxation strength need to be given logger software is used to collect measurements
for each individual relaxation. However, the sim- from the channel of the ADC and store them on
plification introduced is to some extent mitigated a disk. The other end of the sample is attached to
when the integral obtained by substituting eq. the lower grip that can be moved up and down
(12) into eq. (6) is considered. One means of ob- over a range by a threaded screw. The sample is
taining a useful result is to make use of the Al- deflected to a preset deformation by a dead load.
frey1,22 approximation that approximates the ex- The elongation stop allows the imposition of any
ponential decay function to a step decay as fol- fixed elongation on the specimen. The grips and
lows: the sample are enclosed in a constant tempera-

ture air chamber. Elongation is measured by plac-
ing marks on the sample and determining the dis-exp(0t /t ) Å 1 for t ° t
tance between the marks with a cathetometer.

Å 0 for t ú t (13) This method gives better accuracy than do strain
gauges, particularly at higher temperature due to
its noncontact nature. The variation in the resultsSubstitution of eqs. (12) and (13) in eq. (6) yields
obtained by repetition of an experiment under
identical conditions was less than 10%. Three
samples were tested for each condition of strainE (t ) Å Er / (Eu 0 Er ) ∑

R
*

`

ln t

DhR√
2pD ln tR and temperature and the average of these is re-

ported.

1 expF0 1
2 S ln t 0 ln tR

D ln tR
D2G d ln t (14)

Materials

The iPP used was SH 110, from Shell Australia,
supplied as granules. The important propertiesThis equation may be written more simply as

8ED3 4603/ 8ed3$$4603 09-17-97 23:01:05 polaa W: Poly Applied



1106 DUTTA AND EDWARD

occurs is merely to multiply the stress decay curve
by a strain-dependent factor. There appears to be
no substantial change in the shape of the decay
curve over the range of strains and times investi-
gated here. This can be expressed as

s(t )
1
Å E (t )k(1 ) (16)

where k(1 ) is the strain-dependent multiplication
factor and is equal to 1 for small strains in the
linear region. k(1 ) was obtained by measuring the
amount of vertical shift along the modulus scale
necessary to make the curves superimpose. Val-
ues of k are shown in Figure 2 where k Å 1 was
chosen to correspond to 1% strain. Figure 3 shows
a composite curve obtained by plotting the data
from iPP as the reduced modulus. This shows that

Figure 1 Effect of strain on modulus and its relax- the behavior at any strain (within the experimen-ation with time.
tal limit) and period of time can be predicted from
the experimental curve at a particular strain over
that period of time. This result is of great practicalare density, 0.8983 gm/cc; specific heat, 2731.0 J/
utility.kg/deg; conductivity, 0.10 W/m/deg; melt den-

sity, 734.59 kg/cu; and viscosity at 2257C 392.29
and 93.09 Pa-s, respectively, at shear rates of 100

Stress Relaxation as a Function of Timeand 1000 s01 .
and Temperature

Figure 4 shows a typical 3D plot of the tensileSample Preparation Technique
modulus as a function of time and temperature.

An end-gated two-plate mold of a cavity dimen- Experiments were carried out over a temperature
sion 205 1 40 1 1.7 mm was used to mold rectan- range of 227C (295 K) to 1577C (430 K) and for
gular plaques on an injection-molding machine. times up to 4000 s. The modulus and time are
The molding parameters were melt temperature, plotted on log scales, and temperature, on a linear
2257C; mold temperature, 407C; injection time, 1.5 scale. The modulus decreases with increasing
s; pack pressure, 60 MPa; pack time, 15 s; and temperature as expected, and the shapes of the
cooling time, 20 s. For stress-relaxation measure- curves at various temperatures appear to be su-
ments, 1.7 mm-thick strips of 180 1 10 mm were perimposable to form a single master relaxation
machined from the plaque with the long dimen- curve, by shifting them horizontally along the log
sion along the mold-filling direction. time axis. According to Ferry et al.,10,21 the distri-

bution of relaxation time at temperature T de-
noted by GT(t ) is related to the distribution of

RESULTS AND DISCUSSION relaxation times at a standard temperature by

Stress Relaxation as a Function of Strain r0T0

rT
GT (aTt ) Å GT0 (t ) (17)

Figure 1 shows the tensile stress-relaxation char-
acteristics of iPP at 307C for different strains in
the range of 0.3–4%. It is observed that linearity24 The quantity aT is a function of temperature

only and from eq. (17) is defined equal to unity(the stress-relaxation modulus curves are inde-
pendent of the strain at which they are carried at the reference temperature T0 . The quantity r0 /

r are densities at T0 and T , and for pure polymers,out) holds true for PP only at very low strains
(õ0.3%). However, the material appears to show the ratio is quite a small correction factor that

may be neglected within the accuracy of the the-generalized viscoelastic behavior, i.e., the effect
of changing the strain at which stress relaxation ory. The correction factor T0 /T is small and was
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Figure 2 Plot of vertical shift, ln k, as a function of strain.

introduced by Ferry25 and Ferry et al.21 to correct experimental relaxation curve at different tem-
for the temperature effect resulting from entropy peratures plotted against logarithmic time by
elasticity. However, Tobolsky and McLoughlin26 measuring the amount of shift along the time
indicated that its use is questionable from both a scale necessary to make these curves identical. A
theoretical and experimental point of view. In our very careful test of eq. (18) was made for the
case, the composite relaxation curve does not stress-relaxation results obtained from iPP. It ap-
show any better fit with the introduction of T0 /T pears that the equation is sufficiently accurate in
and so the factor was omitted. Therefore, we have the range of 30 to 1577C. Figure 5 shows the mas-

ter relaxation curve so obtained at a reference
GT (aTt ) Å GT0 (t ) (18) temperature of 307C. To augment the results at

low temperatures and short times, some data
points extracted from published dynamic mechan-The quantity aT was obtained directly from the

Figure 3 Composite graph for all different experimental strains.
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1108 DUTTA AND EDWARD

period of time. This gives further confidence in
the experimental results and in the usefulness of
the formulation.

Shift Factor and Apparent Activation Energy

The time dependence of the mechanical behavior
of a linear viscoelastic material at constant tem-
perature can be well represented by a relaxation
spectrum, and the dependence on temperature is
given by the shift factor aT . Williams, Landel, and
Ferry (WLF)21 showed that the shift factor data
for a number of amorphous polymer and glass-
forming liquids can be described by the WLF eq.
(8). Rearranging eq. (8), we can write

0 (T 0 T0)
log aT

Å C2

C1
/ (T 0 T0)

C1
(19)

Figure 4 Plot of modulus as a function of time and
temperature: 1.1% strain.

If the material data follow the WLF equation,
then a plot of 0 (T 0 T0) / log aT versus (T 0 T0)
should give a straight line, and from the slope andical analysis (DMA) results on iPP (with proper

conversion) were included.27 Additionally, the intercept, the values of C1 and C2 can be calcu-
lated. Figure 6 shows a plot of 0 (T 0 T0) / log aTstress-relaxation curve for the iPP over a very

long period of time (280 h) is plotted in Figure 5. vs. (T 0 T0) and it is clear that this is far from
being a straight-line relationship, i.e., iPP doesThe short-time DMA results tally very well with

the curve predicted by the reduced variable not conform to the WLF equation. This is not un-
expected due to the fact that iPP is a semicrystal-method, as do the real-time values over a long

Figure 5 Master relaxation curve for PP reduced to 307C. Decay of real-time modulus
as a function of time is also compared with the master curve: (n ) modulus versus ln(t /
aT ) ; (l ) modulus versus ln t ; (h ) points taken from ref. 27.
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Figure 6 Plot of 0 (T 0 T0) / log aT versus (T 0 T0) .

line polymer and its free volume can be thought aT above 1507C is caused by melting and the data
points below this temperature may be roughly fit-to be quantized. Therefore, as discussed above, it

is expected to follow the Arrhenius equation for ted to a straight line. The linear regression curve
is also shown in the plot. The apparent activationthe major relaxations.

The shift factors required to superpose data of energy was calculated from the slope of the regres-
sion curve and is 200 kJ/mol. This average activa-Figure 5 are plotted against the inverse tempera-

ture in Figure 7. It appears that the data may be tion energy is comparable with that of Attalla et
al.28 (163–221 kJ/mol depending on the experi-crudely described in terms of an activation energy

Q defined by eq. (7). The sudden decrease in ln mental conditions), Faucher29 (211 kJ/mol), and

Figure 7 Shift factor versus inverse temperature plot: ( ) first-order regression
line considering one-component model; (---- ) first-order regression line considering two-
component model; (rrrrrrr) first-order regression line considering three-component
model.
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1110 DUTTA AND EDWARD

Wada30 (167 kJ/mol). However, it is clearly seen equation and the data. This algorithm seeks the
values of the parameters that minimize the sumfrom Figure 7 that a two-component fit could far

better describe the relationship below 1507C. By of the squared differences between the values of
the observed and predicted values of the depen-using a two-component fit, the activation energies

of the two corresponding relaxation processes are dent variables by an iterative process. Sigmaplot/
Sigmastat starts with initially provided parame-found to be 156 and 368 kJ/mol, respectively. iPP

is a complex material with a complicated super- ters and proceeds to see how well the equation
fits and then continues to make better guessesmolecular structure and morphology31 and a liter-

ature survey reveals that two or three main tran- until convergence within a predefined tolerance
is obtained. The nonlinear regression may be usedsitions (depending on material and testing

method) are observed in iPP.31–40 Dynamic me- to fit almost any equation desired.47 First, a single
distribution of relaxation times was considered.chanical analysis has always revealed two main

transitions.28,32,41 The highest temperature peak The parameters used for the single-relaxation
nonlinear regression analysis were Dh Å 1 (the(a ) in iPP is said to be associated with a crystal-

line phase-related relaxation (inter- or intracrys- relative strength of the relaxation) and Q Å 200
kJ/mol (the activation energy calculated from lin-talline motion origin). This broad relaxation (ly-

ing from 407C to higher than 1007C) is a complex ear regression). Eu was taken from the observed
values for undrawn PP by Jarrigeon et al.27 atmode hiding several loss processes.38,39 The other

transition (b ) is the Tg , or the glass transition for low temperature and low frequency by dynamic
mechanical analysis (with due conversion of theiPP. Some investigators have observed two amor-

phous transitions in iPP with the characteristics frequency scale to the time scale) as discussed
above and shown in Figure 5. The D ln t and lnof a glass transition (one from the amorphous

zone restrained by the crystallites, the other from tR were allowed to vary to get the best fit with the
experimental results. The value of the responsethe relatively free amorphous zone).41–43 The two

activation energies obtained from Figure 7 consid- variable varies over a wide range with tempera-
ture and, therefore, the error variance is not uni-ering the two-component model may be consid-

ered as the activation energies for the two relax- form. Therefore, weighted nonlinear regression
analysis was used, where the weight variable wasation processess, a and b, respectively. These acti-

vation energies were used for the nonlinear defined as the reciprocal of the response variable.
If this is not done, the total sum is sensitiveregression analysis as described in the following

section by using eq. (15). It is important to note mainly to the large response variable values, lead-
ing to a misleading nonlinear regression analysis.that Attalla et al.28 observed experimentally that

the activation energies for iPP were essentially The fitting of the calculated data with that of
the experimental one is shown in Figure 8 in aindependent of experimental strain. The variation

in activation energy with different samples of dif- 3D plot. The parameters necessary to have the
best possible fit with the one-component normalferent crystallinity and morphology was also

found to be minimal. distribution model are also shown in the figure. It
is observed that the experimental and theoretical
points appear to match excellently up to 807C

Nonlinear Regression Analysis (within 10% accuracy) but the fit is poor above
that temperature level. Particularly, in the tem-A nonlinear regression analysis fitting eq. (15) to

the experimental data at a strain of 1% was car- perature region of 90–1307C, the longer time sec-
tion of the relaxation (the tail section) deviatesried out by using the statistical software Sigmas-

tat/Sigmaplot, Jandel Scientific Software, CA, significantly (the predicted value is much lower
than the experimental one). The R2 value calcu-U.S.A. The relaxation modulus, time, and temper-

ature were used as variables, and the mean relax- lated was 0.917 and indicates the poor quality of
fitting. The R2 value calculated here is defined48ation time ln tR , the standard deviation D ln t,

and the relative strengths DhR of the individual for nonlinear regression as
distributions were regarded as adjustable mate-
rial parameters. Er , Eu , Q , and T0 were regarded R2 Å 1 0 ∑ (Y 0 YO )2/∑ (Y 0 YU )2

as constants. The Sigmaplot/Sigmastat nonlinear
regression uses the Marquardt–Levenberg algo-
rithm44–47 to find the coefficients (parameters) of where Y is the response variable, Ŷ is the fitted

value of the response variable, and YV is the mean.the variables that give the best fit between the
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Figure 8 Fitting of experimental data with normal distribution function (one-compo-
nent model) : 1.1% strain: (l ) experimental points; (s ) theoretically calculated points.

Figure 9 shows the effect of temperature on bution remains unchanged, i.e., the behavior of
a thermorheologically simple material. Figure 10the distribution of the relaxation time in the one-

component model. With increasing temperature, depicts the calculated modulus over a wide range
of time and temperature. The one-componentthe distribution shifts progressively toward the

lower time scale; however, the shape of the distri- model can predict, satisfactorily, the modulus val-
ues in the intermediate range of time and temper-
ature. At low temperature and/or shorter time

Figure 10 Theoretically calculated modulus over a
wide range of time and temperature using one-compo-Figure 9 Effect of temperature on the distribution of

the relaxation time (one-component model) . nent normal distribution model.
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Figure 11 Fitting of experimental data with normal distribution function (two-com-
ponent model) : 1.1% strain: (l ) experimental points; (s ) calculated points.

and higher temperature and/or longer time, the component 2]. The second component that has
about a 16% contribution to the process is broaderpredicted values are significantly lower than the

experimental ones. Therefore, it appears that iPP compared to that of the first one. This distribution
may be attributed to the crystalline phase-relatedis a thermorheologically complex material and a

one-component normal distribution model is not relaxation, whereas the first component is related
sufficient enough to describe the linear viscoelas-
tic behavior.

To improve on the one-relaxation fit, a two-com-
ponent normal distribution model was considered
for the fitting procedure. In this case, Q1 and Q2

obtained from Figure 7 were used. The relative
strength of the distributions is Dh in one case and
(1 0 Dh ) in the other (because the total strength
is 1). The fitting of the calculated surface to the
experimental data is shown in Figure 11, where
a weighted regression method was also employed.
The parameters necessary to achieve the fit are
also shown in the graph. As observed in the figure,
an excellent fit is apparent over the whole range
of temperature. However, above 1507C (where
melting of crystallites takes place), an error of
more than 25% was observed (the predicted val-
ues are much higher than the experimental one).
The effect of temperature on the two distributions
is illustrated in Figure 12. The individually nor-
malized distribution curves for both the distribu-
tions are shown. The actual overall distribution Figure 12 Effect of temperature on the distribution
will be the sum of the relative strengths of the of the relaxation times (two-component model) :

( ) component 1; (------ ) component 2.two distributions [Dh component 1 / (1 0 Dh )
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to the amorphous phase of iPP. Because the acti-
vation energies of the two relaxation processes are
different, their shift in position with temperature
is different, and so the shape of the overall distri-
bution also changes with temperature, which is
clearly observed in Figure 12, i.e., the thermo-
rheological complexity of the polymeric material
like iPP may be addressed by assuming that the
material has two or more different relaxation dis-
tributions, each of which is thermorheologically
simple but have different temperature dependen-
cies. The predicted modulus over a wide range of
time and temperature using the two-component
normal distribution model is illustrated in Figure
13, and it can be seen that the two-component
model can predict the modulus accurately from
very low to high temperatures.

Figure 14 Plot of the residuals for the two-component
regression of iPP.Determining Model Adequacy

Figure 14 shows the plot of weighted residual per-
cent (residual/response variable 1 100) against three-component fitting makes the computation

significantly more complicated and time-consum-the explanatory variables, time and temperature,
and the residual varies between /10 and 015%. ing. The R2 value for the two-component fit is

0.994, which clearly indicates the excellent qual-Although the residual is low, the pattern of the
plot is not an ideal unstructured horizontal band ity of fitting and leaves little room for further im-

provement. To build confidence in the parameters,centered at zero. The systematically decreasing
structural band indicates the faster decay of the several regression analyses were carried out us-

ing starting values for the various parameters farexperimental points compared to the response
variable, and it seems that a further very weak away from the known final values. Convergence

was always observed to the reported parameters,relaxation process would need to be included to
model the data with increased accuracy. However, giving increased confidence regarding the final

parameters obtained and that the location of the
absolute minimum was found.

Regression analysis assumes normality of the
underlying population or residuals of the response
variables and can become unreliable if this as-
sumption is violated. Sigmastat software was
used for normality testing, which uses the Kolmo-
gorov–Smirnov (with Lilliefors’ correction) proce-
dure49 to test normality of the estimated underly-
ing population. The Kolmogorov–Smirnov proce-
dure tests the null hypothesis

H0 : Fn (x ) Å F0(x )

against the alternative

Ha : Fn (x ) x F0(x )

where F0(x ) and Fn (x ) are, respectively, the con-
tinuous cumulative distribution function (cdf) ofFigure 13 Theoretically calculated modulus over a
the hypothesized distribution and the sample dis-wide range of time and temperature using two-compo-

nent normal distribution model. tribution. The Kolmogorov–Smirnov test statistic
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Dn Å maxÉFn (x ) 0 F0(x )É

When the hypothesis that Fn (x )Å F0(x ) is true, APPENDIX: NUMERICAL APPROXIMATION
Dn has a distribution which is independent of TO THE CONTINUOUS CUMULATIVE
F0(x ) . This distribution of Dn was tabulated50 as DISTRIBUTION23

a function of n and a ( level of significance) when
F (x ) Å F0(x ) . The hypothesis that F (x ) Å F0(x ) If
is rejected at the a level of significance whenever
Dn (x ) ú da;n , where da;n are the values given in

I (U ) Å 1√
2p *

`

U
expS0u2

2 D duthe table of Kolmogorov–Smirnov test statistics.
The residual observed in this experiment is non-
uniform and the standardized residual was used
for the hypothesis testing. The details of the calcu- then for U ú 0, I (U ) Å 1 0 P (U ) Å 1 0 P (ÉUÉ) ,
lation of the standardized residual are discussed and for U õ 0, I (U ) Å P (0U ) Å P (ÉUÉ) , where
elsewhere51 and it is emphasized that for checking P (ÉUÉ) Å 1 0 1

2(1 / c1U / c2U2 / c3U3 / c4U4)04

the normality assumption one must use the stan- / 1 (U ) , where c1 Å 0.196854, c2 Å 0.115194, c3
dardized residual. The standardized residual at Å 0.000344, c4 Å 0.019527, and É1(U)É õ 2.5
the 10 s data point from each experimental tem- 1 1004.
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